Finding $\lim_{x\to 0} \large \frac {\sqrt{x}}{\sin x}$
Using L'Hospitals rule I keep on getting $\frac{0}{0}$... But Im not sure
if this is correct?
$$\lim\limits_{x\to 0} \frac{\sqrt{x}}{\sin x}$$
$$\frac{\frac{1}{2}x^{-\frac{1}{2}}}{\cos x}$$
$$\frac{-\frac{1}{4}x^{-\frac{3}{2}}}{-\sin x}$$
Thanks in advance for any help.
No comments:
Post a Comment